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Energy balance in feedback synchronization of chaotic systems
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In this paper we present a method based on a generalized Hamiltonian formalism to associate to a chaotic
system of known dynamics a function of the phase space variables with the characteristics of an energy. Using
this formalism we have found energy functions for the Lorenz, Ro¨ssler, and Chua families of chaotic oscilla-
tors. We have theoretically analyzed the flow of energy in the process of synchronizing two chaotic systems via
feedback coupling and used the previously found energy functions for computing the required energy to
maintain a synchronized regime between systems of these families. We have calculated the flows of energy at
different coupling strengths covering cases of both identical as well as nonidentical synchronization. The
energy dissipated by the guided system seems to be sensitive to the transitions in the stability of its equilibrium
points induced by the coupling.
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I. INTRODUCTION

It is said that two different dynamical systems synch
nize when they approach their behaviors as a consequen
their mutual interaction. The fact that it is possible to indu
a synchronized regime between deterministic chaotic osc
tors makes synchronization a phenomenon of significant
terest in many areas of science and technology such as
munication, electronics, optics, chemistry, and biolo
Survey paper on different approaches in the synchroniza
and control of chaotic systems can be found in Ref.@1#.
Usually the efficiency of a particular synchronization a
proach is only evaluated in terms of its ability to reach t
established goal of proximity between the systems invol
and very little is said about the cost, in terms of energy,
the process itself@2#. Nevertheless, some of the mechanis
described for the synchronization of nonidentical chao
systems imply feedback interaction with coupling streng
going to infinity @3#, and even the mechanism of comple
replacement first reported in Ref.@4# is equivalent to a dif-
fusive type of coupling with infinite gain@5#, which might
result in a demand of an unlimited amount of energy i
synchronized regime has to be reached and maintai
Much research on synchronization has been carried
working with theoretical systems for which it is not obviou
how to define a measure of their behaviors in terms of ene
and, consequently, how to establish the cost of their sync
nization process. That is the case, for instance, of the v
well-known chaotic systems of the Lorenz, Ro¨ssler, and
Chua families. In this paper we develop a formal proced
to assign to a chaotic system of known dynamics a func
of the variables of the phase space with the characteristic
an energy. Usually, it is the understanding of the energy
forces actuating on a system that permits to infer its kinet
The approach in this work needs to be the opposite. Gi
the kinetics, we have to investigate what function of t
phase space variables can be consistently thought of
possible energy function for the system. This question find
1063-651X/2004/69~1!/011606~12!/$22.50 69 0116
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straightforward answer in Hamiltonian systems where
Hamiltonian function plays the role of the total energy of t
system@6#. A system is Hamiltonian if it has the formẋ
5M¹H(x); xPR2n, whereH(x) denotes the Hamiltonian
function; andm5(2I d

0
0
I d), whereI d denotes the identity ma

trix in Rn. As M is a skew-symmetric matrix,ẋ and¹H(x)
are always orthogonal. Consequently, the movement ta
place at a constant value of the Hamiltonian~energy!, that is,
H(x) is a first integral and the system is conservative. N
ertheless, dissipative chaotic systems are not conserva
and neither can they be written in a Hamiltonian format n
have they a first integral energy function. Some kind of ge
eralization of the Hamiltonian formalism, including dissip
tion, is then required in order to be able to analyze a dis
pative chaotic system under this perspective. In Ref.@7#
McLachlanet al. provide a general framework that encom
passes both energy functions, in the conservative case,
Lyapunov functions, in the dissipative case, showing t
they have a common formulationẋ5M (x)“H(x); xPRn

andM is either a skew symmetric or a definite or semide
nite negative matrix. This generalization is compatible w
the extended view of thinking of a Lyapunov function as
kind of generalized energy for dissipative systems. Nevert
less, dissipative chaotic systems do not fit into t
McLaghlanet al. generalization as they have neither a fi
integral energy nor a Lyapunov function. A more gene
matrix M~x! is required to account for the kind of dissipatio
that takes place in dissipative chaotic systems. In Ref.@8#
Bloch et al. express the general dynamics for systems w
dissipation as sum of a skew symmetric Poisson bracket
a symmetric bracket. This approach is also adopted in R
@9,10# using an ordinary matrix notation, and it is the on
that we will be using in this paper when we refer to a ge
eralized Hamiltonian formalism.

This generalized Hamiltonian approach has been use
problems of control@9,11#, where typically positive definite
quadratic forms are sought to play the role of energy. Unf
©2004 The American Physical Society06-1
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tunately, as any positive definite quadratic form can alw
be forced to be a solution for the energy compatible with
generalized Hamiltonian formalism, independently of t
system itself, the same trivial positive definite quadratic fo
has usually been assigned to different chaotic systems@9#.
Nevertheless, assigning always the same type of en
function to every chaotic oscillator fails to uncover the ind
vidual traits of its particular dynamics. The generaliz
Hamiltonian approach requires additional hypotheses in
der to be able to assign to each oscillator a particular ene
function. These additional hypothesis can be establis
forcing a link between change in energy and change in ph
space volume in the sense that both go together. Any en
variation cannot occur without a variation in the phase sp
volume and vice versa. We show in the paper that when
constraint is imposed to a particular chaotic oscillator as
additional condition to its generalized Hamiltonian repres
tation it determines an energy function which is specific
the chaotic system and that is no longer, in general, a pos
definite quadratic form. We would like to emphasize that t
condition occurs naturally in ordinary physical systems, a
that when this approach is applied to an ordinary phys
system the energy obtained is the actual energy of the
tem.

Once the energies corresponding to two particular cha
oscillators have been found, the flows of energy that t
place when they synchronize their behaviors can be ca
lated. Many theoretical studies of chaos synchronizat
have been carried out coupling identical systems. In th
cases, if feedback synchronization is used, identical sync
nization is reached spontaneously at a given, usually sm
value of the gain parameterk ~coupling strength!. Neverthe-
less, in most of the practical occurrences of synchroniza
the systems involved are not identical. They can be eit
nonidentical systems of the same family@12,13# or, even,
systems of a completely different structure@14,15#. If non-
identical chaotic systems are forced to synchronize via fe
back, synchronization does not spontaneously occur a
given value of the gain parameterk but, rather, it must be
firmly enforced through the establishment of large values
the gain parameter. Identical synchronization between n
identical systems is always a theoretical limit regime t
would occur for coupling strengths going to infinity@3#.
Nevertheless, the extent of proximity in the behavior of tw
systems that is going to be considered a synchronized reg
will depend on the particular application considered and
will be, consequently, an experimental decision. As differ
degrees of synchronization can be required for different p
tical purposes, to know about the dependency of the flow
energy on the degree of synchronization can become an
pect of practical interest. Also, we show that maintaining
guided system in a synchronized regime requires an ave
nonzero flow of energy per unit time. This flow of energ
should be provided, or absorbed, by the coupling device
compensate the interaction of the guided system with its
vironment through the dissipative components of its str
ture. This flow of energy, which can be assimilated to a d
sipation process, turns out to be sensitive to some sa
features of the bifurcation pattern of equilibriums induced
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the coupling on the dynamical entity conformed by t
guided system plus the coupling mechanism.

We develop in Sec. II the mathematical formalism to a
sign to any chaotic system of known structure a function
the variables of the phase space that could be formally c
sidered as an energylike function of the system. Energy fu
tions for the Lorenz, Ro¨ssler and Chua families of chaoti
systems are found in Sec. III. Section IV. is devoted to stu
the energy balance in the feedback synchronization pro
of two chaotic oscillators. In Sec. V. the energy functio
found in Sec. III are used to exhaustively compute the ene
balance in the feedback synchronization of identical and
ferent chaotic systems for different values of the gain para
eter of the coupling term. Finally, a discussion of the resu
is presented in Sec. VI.

II. DETERMINATION OF THE ENERGY FUNCTION

Consider an autonomous dynamical system

ẋ5 f ~x!, ~1!

where xPRn and f :U→Rn is a smooth function with
U#Rn. These dynamical equations can be expressed
generalized Hamiltonian form

ẋ5M ~x!“H, ~2!

where M (x) is the local structure matrix and“H is the
gradient vector of a smooth energy functionH(x). For
Hamiltonian systemsM (x) is a skew-symmetric matrix
which satisfies the Jacobian identity. For a generaliz
Hamiltonian systemM (x) is no longer skew symmetric bu
can be decomposed into the sum of a skew-symmetric ma
J(x) and a symmetric matrixR(x)

ẋ5@J~x!1R~x!#“H. ~3!

The time derivative of the energy along a trajectory
then

Ḣ5“HT@J~x!1R~x!#“H5“HTR~x!“H ~4!

as for the skew-symmetric matrixJ(x),

“HTJ~x!“H50. ~5!

In many physical problems the local structure mat
M (x) and the energy functionH(x) of the dynamical system
are known, and then the energy change in time is ea
evaluated by Eq.~4!. In our case we only know the vecto
field given by Eq.~1! and we do not know either the energ
function of the system or its structure matrix. The problem
then to associate to the dynamical system an energy func
and a local structure matrix compatible with its dynamic
that is, in the form of Eq.~2!. This association is not un
equivocal, and to use as an energy function the trivial q
dratic positive definite function of the state variables@9# is
6-2
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frequent. In doing so, the procedure assigns to every dyna
cal system the same type of energy function and fails
uncover the particular characteristics of its dynamics.
adopt here a different approach. As Eq.~2! does not uniquely
determine matrixM (x) and energyH, additional hypotheses
are required in order to use that formalism to assign a s
cific energy function to the system given by Eq.~1!. In ordi-
nary physical systems any energy variation that occurs
consequence of their dynamics always takes place toge
with a volume change in phase space. In what follows
show that if we impose this natural condition to the ene
function to be associated to the dissipative chaotic oscilla
given by Eq.~1!, this energy function becomes unique.

According to Liouville’s theorem, the volume rate o
change in phase space associated to the vector velocity
f is related with the divergence of that field bydV(t)/dt
5*A(t)div f (x)dx5*A(t)( i 51

n ] f i /]xidx, where A is a
bounded set in the phase spaceRn and V its volume. If we
could isolate unequivocally from the vector fieldf the com-
ponent that contributes to its divergence we would be abl
determine the energy associated to that vector field, impo
the condition that any temporal variation of the energy alo
a trajectory of the system occurs exclusively due to the p
ence of that component.

Helmholtz’s theorem@16# guarantees that we can decom
pose a vector fieldf into the sum of one divergence-fre
vector f c that accounts for the whole rotational tensor of
plus one gradient vector fieldf d that carries its whole diver
gence.

f ~x!5 f c~x!1 f d~x!. ~6!

In practice, we can construct the vector fieldf d taking all
the terms off that contribute to its divergence and only tho
terms. The rest of the terms of the vector fieldf form f c .

The decomposition given by Eq.~6! can be used to deter
mine the energy associated with the systemẋ5 f (x) impos-
ing the condition that any change of the energy along a
jectory of the system occurs exclusively due to t
contribution of the termf d .

If we impose in Eq.~4! the condition

R~x!“H5 f d~x!, ~7!

we have

Ḣ5“HTf d~x!. ~8!

That is, the energy is dissipated, passively or actively,
to the divergent component of the velocity vector field a
can be thought of as the work per unit time of the ene
gradient along this velocity component according to Eq.~8!.

To determine the energy functionH that fulfills this re-
quirement it is sufficient to realize that if Eq.~7! holds, then
Eq. ~3! can be rewritten as

ẋ5@J~x!1R~x!#“H5J~x!“H1 f d~x!, ~9!

and, consequently,
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J~x!“H5 f c~x!. ~10!

On the other hand, forJ(x) to be a skew-symmetric ma
trix,

“HTJ~x!“H50 ~11!

or

“HTf c~x!50, ~12!

which defines for each dynamical system a partial differ
tial equation from which the energy functionH(x) can be
calculated.

Once the energy functionH(x) is known, the system can
be easily rewritten in aẋ5@J(x)1R(x)#“H(x) formulation
to make explicit the corresponding skew-symmetricJ(x) and
symmetricR(x) matrices. We would like to point out tha
whereas the energy function is unequivocally determined
the velocity vector fieldf, the matricesJ(x) and R(x) are
not, which simply shows the fact that different formulatio
can be compatible with the same dynamics.

III. ENERGY FUNCTIONS FOR SOME WELL-KNOWN
CHAOTIC OSCILLATORS

In this section we apply the above procedure to ass
energy functions to three well known families of chaotic o
cillators, Lorenz, Ro¨ssler, and Chua. In these three cases
xPR3, we will use the standard notationx, y, z for the phase
space variables. First, we would like to illustrate our po
finding an energy function for an ordinary dissipative ele
trical oscillator. This circuit will also be used as an introdu
tory example for the analysis of the balance of energy dur
the synchronization process.

Consider the seriesRLC electrical network of Fig. 1,
whereR is the resistance of the resistor,L the inductance of
the coil, andC is the capacity of the capacitor. The sta
variables are the currenti through the circuit and the voltag
difference v between the terminals of the capacitor. Th
electrical circuit is modeled by the equations

i̇ 52
R

L
i 2

1

L
v,

v̇5
1

C
i . ~13!

FIG. 1. An RLC electrical network.
6-3
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If we identify in the velocity vector field the part respon
sible for the divergence of the field,f d , and the part that
does not contribute to it,f c , we have

f c5S 2
1

L
v

1

C
i
D and f d5S 2

R

L
i

0
D . ~14!

Then, according to Eq.~12!, the energyH associated with
the circuit will satisfy the partial differential equation

2
v
L

]H

] i
1

i

C

]H

]v
50, ~15!

which is satisfied by the quadratic form

H5 1
2 ~Li 21Cv2!, ~16!

which corresponds to the energy usually associated with
electrical circuit, as sum of the potential energy in the c
plus the energy accumulated in the capacitor. Note that
componentf c of the vector field is conservative with respe
to H as it does not contribute to the change of the energH
along a trajectory of the system.

We can also find, according to Eq.~8!, the rate of change
of this energy along a trajectory of the system.

Ḣ5“HTf d~x!5~Li ,Cv !S 2
R

L
i

0
D 52Ri252vRi ,

~17!

wherevR is the terminal voltage in the resistor. Thus, we c
see that the described procedure determines a dissip
process that occurs in the correct place, the resistor, an
the appropriate rate,2vR i.

A. Lorenz

In this section we look for a function of the phase spa
variables that could be consistently considered as an en
function for the Lorenz family of systems. Letẋ5 f (x) be
the following Lorenz system:

ẋ5sy2sx,

ẏ5rx2y2xz, ~18!

ż5xy2bz.

To find a decomposition of the velocity vector fieldf of
the type described by Eq.~6!, we first investigate which
terms in each component of the velocity field contribute
its divergence. These terms, and only these, define the ve
field f d . The remaining terms form the vector fieldf c . We
identify the following vector fields:
01160
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f c5S sy

rx2xz

xy
D and f d5S 2sx

2y

2bz
D . ~19!

As it can be observedf d is a gradient vector that carrie
the whole divergence of the vector fieldf and f c is a diver-
gence free-vector that takes account of its whole rotor.
the decompositionf 5 f c1 f d of the velocity vector field of
the Lorenz system given by Eq.~18! satisfies the conditions
of Helmholtz’s theorem.

Consequently, according to Eq.~12!, the energy function
H(x,y,z) will obey the following partial differential equa
tion:

sy
]H

]x
1~rx2xz!

]H

]y
1xy

]H

]z
50, ~20!

one solution being the nondefinite quadratic form

H5
1

2 S 2
r

s
x21y21z2D . ~21!

The derivative of this energy along a trajectory is acco
ing to Eq.~8!:

Ḣ5rx22y22bz2. ~22!

Figure 2 shows the isosurface of constant energyH
5687.53~arbitrary units! for a Lorenz system with param
eterss516, r545.92,b54. The location of the actual Lo
renz attractor and a trajectory corresponding to its conse
tive componentẋ5 f c(x) can also be seen.

Once the energy functionH is known, the Lorenz system
can be easily rewritten, according to Eq.~3!, as sum of a
skew-symmetric matrixJ(x,y,z) and a symmetric matrix
R(x,y,z). Note that matricesJ(x,y,z) andR(x,y,z) are not
unique. The following is an example of decomposition of t
Lorenz system where the symmetric matrix takes a diago
form

FIG. 2. Isosurface corresponding to a constant energy valuH
5687,53 for a Lorenz system with parameters~16, 45.92, 4!. En-
ergy is in arbitrary units.
6-4
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S ẋ

ẏ

ż
D 5F S 0 s 0

2s 0 2x

0 x 0
D 1S s2

r
0 0

0 21 0

0 0 2b

D G
3S 2r

s
x

y

z

D . ~23!

B. Rössler

If we apply the same procedure to the Ro¨ssler system

ẋ52y2z,

ẏ5x1ay, ~24!

ż5b1~x2c!z,

we obtain

f c5S 2y2z

x

b
D and f d5S 0

ay

~x2c!z
D .

This time the vector fieldf d is not a gradient and, conse
quently, this decomposition does not satisfy the condition
Helmholtz’s theorem. That is, althoughf d carries the whole
divergence of the velocity fieldf, it still retains part of its
rotor. A quick inspection shows that the addition tof d of the
divergence-free vector (1/2z2,0,0)T compensates its roto
while keeping its divergence unchanged. Thus Helmhol
decomposition of the velocity fieldf of the Rössler system
will be f 5 f c1 f d , with

f c5S 2y2z21/2z2

x

b
D and f d5S 1/2z2

ay

~x2c!z
D ,

~25!

where f c carries the rotor off and f d its divergence.
Consequently, according to Eq.~12!, the energy function

H(x,y,z) will obey the following partial differential equa
tion:

2~y1z11/2z2!
]H

]x
1x

]H

]y
1b

]H

]z
50, ~26!

which has the solution

H5 1
2 $@x1b~z11!#21~y1z2/21z2b2!2%. ~27!

The derivative of this energy along a trajectory will b
given according to Eq.~8! by
01160
f

’s

Ḣ5“HTS 1/2z2

ay

~x2c!z
D . ~28!

In Fig. 3 a Rössler attractor,a50.2, b50.2, c55.7, along
with the isosurface corresponding to energyH575, in arbi-
trary units of the phase space, is shown. The trajectory on
surface corresponds to the conservative componenẋ
5 f c(x) of the Rössler dynamics in the particular decomp
sition performed in this work. Note that the energy functi
H is not, strictly speaking, an exclusive characteristic of
Rössler system but rather of any system with the same c
servative componentf c . On the other hand, the derivative o
the energy along a trajectory,Ḣ, is strictly linked to the
Rössler dynamics as it is a direct consequence of both
namic components, the conservativef c and the dissipative
f d . The same consideration obviously applies to the ot
families of chaotic systems that we are considering in t
work.

C. Chua

For the case of a continuous Chua system given by
equations

ẋ5ay2ax32acx,

ẏ5x1z2y, ~29!

ż52by,

the following vector fields

f c5S ay

x1z

2by
D and f d5S 2ax32acx

2y

0
D ~30!

FIG. 3. Isosurface corresponding to a constant energy valuH
575 for a Rössler system with parameters 0.2, 0.2, 5.7. Energy i
arbitrary units.
6-5
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are, respectively, divergence-free and irrotational and, co
quently, we have the following law for the energy functio
H(x,y,z),

ay
]H

]x
1~x1z!

]H

]y
2by

]H

]z
50, ~31!

which is satisfied by the nondefinite quadratic form

H5
1

2 S 2
1

a
x21y21

1

b
z2D , ~32!

with time variation along a trajectory

Ḣ5x41cx22y2. ~33!

In Fig. 4 a Chua attractor,a510, b516, c520.143,
along with the isosurfaceH50.001, can be seen.

IV. FEEDBACK SYNCHRONIZATION ENERGY BALANCE

In the preceding section we have assigned different
ergy functions to different chaotic oscillators. The existen
of a function of the phase space variables that measure
energy of a particular state of a given chaotic system perm
evaluation of the energy exchange of the system with
environment when it moves along a particular trajectory. T
energy derivative given by Eq.~8! measures the energy ex
change of systemẋ5 f (x). It can be thought of as a dissipa
tion process that takes place in the divergent constituent
the system. The energy derivative given by Eq.~8! can be
either positive or negative, and, consequently, the excha
of energy that the system maintains with its environm
should be understood as being sometimes an active
sometimes a passive, dissipation process. An autonom
chaotic oscillator initially located outside its natural attrac
will lose, or gain, energy in its movement towards its natu
oscillatory region of phase space where its net average
ergy variation will be zero. This is so because on the attra
the trajectory will repeatedly return to arbitrarily close sta

FIG. 4. Isosurface corresponding to a constant energy valuH
50.001 for a Chua system with parameters~10, 16,20.143!. En-
ergy is in arbitrary units.
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in phase space and consequently to arbitrarily close en
values. Thus, on the attractor the time average of the en
rate given by Eq.~8! will be zero,

^@“H f~x!#Tf d~x!&50, ~34!

where the brackets represent averaging in time andH f de-
notes the energy function of systemẋ5 f (x).

So far, systemẋ5 f (x) has been considered as an auton
mous dynamical system. In this section we intend to evalu
the energy balance that takes place when a system is fo
to synchronize another guiding system. A chaotic oscilla
ẋ5 f (x) can be forced to synchronize a different guidin
chaotic systemẏ5g(y) via feedback coupling according t
the equations

ẏ5g~y!,

ẋk5 f ~xk!1K~y2xk!, ~35!

wherex,yPRn, f ,g:Rn→Rn are smooth functions,K is the
n3n diagonal matrix with diagonal entriesk.0, a gain pa-
rameter that measures the strength of the coupling, andxk(t)
indicates the state of the guided system when the gain
rameter is set tok. Note thatK(y2xk) is the coupling inter-
face required in order to be physically able to implement
coupling of both systemsẋ5 f (x) and ẏ5g(y).

If the oscillatory systemf (xk) is maintained in a forced
regime outside its natural attractor, Eq.~8! will produce a net
nonzero average dissipation rate. Nevertheless, conside
the whole entityf (xk)1K(y2xk), the trajectoryxk(t) re-
mains, for every value ofk, confined to an attractive regio
of phase space@17# and the net average energy variatio
corresponding to systemf (xk)1K(y2xk) will also be zero.
That is,

^@“H f~xk!#
T@ f d~xk!1K~y2xk!#&50, ~36!

from which,

^@“H f~xk!#
TK~y2xk!&52^@“H f~xk!#

Tf d~xk!&. ~37!

According to Eq.~37!, the coupling device provides th
flow of energy needed to compensate the energy exchang
systemf (xk) with its environment. Thus, the amount of e
ergy per unit timeP(k) that is necessary to provide th
guided system with in order to maintain the degree of s
chronization attained with a coupling of gain parametek
and, consequently, forced to follow an unnatural traject
xk(t), will be

P~k!52^@“H f~xk!#
Tf d~xk!&. ~38!

This energy can be considered as the cost of maintaining
particular level of synchronization.

The degree of synchronization reached, measured in te
of the error vectore5xk2y, depends on the magnitude o
the gain parameterk. The norm of the synchronization erro
can be made arbitrarily small, as long as a sufficiently la
gain k is implemented. To find the cost of maintaining
6-6
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regime of complete synchronization we can substitutey(t)
for xk(t) in Eq. ~38! to obtain

lim
k→`

P~k!52^@“H f~y!#Tf d~y!&. ~39!

As variabley(t) is confined to move in the attractor of th
guiding system, Eq.~39! shows that the cost, or powe
needed to maintain both systems completely synchroni
remains bounded in spite of the fact that its attainment m
imply arbitrarily large values of the gain parameterk.

V. COMPUTED SYNCHRONIZATION ENERGY

In this section we present computational results conce
ing the energy balance of the synchronization process
some chaotic systems in a wide range of values of the g
parameterk. First we introduce the subject with an illustra
tive example where theRLCcircuit studied in Sec. III tries to
synchronize its behavior to a chaotic Lorenz signal. Seco
we study in great detail the transition towards identical s
chronization of two coupled identical Lorenz systems a
also of two coupled identical Chua systems. Finally, synch
nizing different chaotic systems is studied in the cases o
Chua guided Ro¨ssler system and a Chua guided Lorenz s
tem.

Let us consider theRLC circuit of Fig. 5 coupled via
feedback to a scalar signal corresponding to the variablex of
a Lorenz system with parameterss516,r545.92,b54. The
guiding signal is chaotic for these particular values of
parameters. As it can be appreciated in Fig. 5, the coup
requires an electronic amplifier to set the appropriate volt
that physically implements the interaction termk(x2 i ). The
complete set of equations that models the synchroniza
process is then

i̇ k52
R

L
i k2

1

L
vk1k~x2 i k!,

v̇k5
1

C
i k . ~40!

FIG. 5. An RLC oscillatory electrical circuit coupled via feed
back to a chaotic Lorenz system.
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The powerP(k) that is necessary to provide the guide
system with in order to maintain the synchronized regi
attained by the circuit at a gaink will be, according to Eqs.
~38! and ~17!,

P~k!52K ~Li k ,Cvk!S 2
R

L
i k

0
D L 5^Rik

2&. ~41!

Note that this power supply is delivered to the system,
the electronic amplifier, from an external energy source. F
ure 6 shows computed results of the power needed to m
tain the synchronized regime of the oscillatory circuit wi
R51V, L51 H, andC51 F, at different values of the gain
parameterk. As it can be appreciated the required power
maintain complete synchronization of the currenti tends to-
wards a limit value of about 160 watts at very large values
the gain parameterk.

A. Identical synchronization

Many works on synchronization of chaotic systems a
concerned with synchronizing systems with the same st
ture and the same parameter values. In this case a sync
nized regime of zero error, identical synchronization, is u
ally obtained when the gain parameterk of the coupling is set
beyond a certain value, usually small. In the two examp
that follow the setting up of the coupling situates the guid
system in a dissipative regime that can only be maintai
with a continuous provision of energy through the coupli
device. The energy dissipated per unit time increases wik
until, abruptly, an identical synchronization regime
reached and the cost of maintaining that synchronized
gime becomes zero.

1. A Lorenz system guiding another identical Lorenz system

We have chosen two identical Lorenz systems with
rameterss516, r545.92,b54, coupled via feedback cou
pling in the way described by Eq.~35!. At these paramete

FIG. 6. Power required to synchronize an oscillatory electri
circuit with R51V, L51 H, andC51 F, to a Lorenz signal at
different gain values. Power is in watts.
6-7
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values the Lorenz system operates in a chaotic regime.
gain parameterk has been varied smoothly ranging fromk
50 to k52. For each value ofk the energyH(xk) given by
Eq. ~21! and its time derivativeḢ(xk) given by Eq.~22! have
been averaged along a trajectory of the coupled system
enough as to be considered averaged on the attractor.
results are shown in Figs. 7~a! and 7~b!, respectively.

As it can be seen, the coupling interface makes the gui
system attractor move through phase space regions of d
ent energy following a waving average energy pattern.
all these values of the gaink the systems are not yet synchr
nized. Identical synchronization occurs at values of the g
parameter in the neighborhood ofk51.6 where the averag
energy of the guided system returns to its original level.
can be seen in Fig. 7~b! the derivative of the energy of th
original guided system, in the sense described by Eq.~37!,
along a trajectoryxk of the coupled system follows a differ
ent pattern. As soon as the coupling is connected, the ave
energy derivative of the guided system becomes nega
that is, it starts to dissipate on average an energy that
coupling device will have to provide in order to maintain t
forced regime. The required energy increases linearly, w
two different slopes, with the gain parameterk, until the
onset of the identical synchronization stage. At values ofk in
the neighborhood ofk51.2 some structural change mu
happen that would permit the guided system to reach v
quickly identical synchronization at the already mention
value of the gaink51.6 with no energy consumption at a
We conjecture that the onset of this identical synchroniza
stage is linked to the transition to stable spiral atk50.77 of
the previously two unstable spirals equilibrium points of t
perturbed Lorenz system. We will elaborate on this idea
the following section.

2. A Chua system guides another identical Chua system

As a different example of identical synchronization w
have performed computational experiments with two ide
cal Chua continuous systems with parametersa510, c5
20.143, b516 linked together with the same type of fee
back coupling described before. This set of parameter va
makes the Chua system itself maintain a chaotic behav
The results are shown in Fig. 8.

FIG. 7. A Lorenz system with parameterss516,r545.92,b54
guiding another identical Lorenz system. In part~a!, average energy
of the guided system at different values of the gain parameterk. In
~b!, average energy dissipated per unit time by the guided syste
different values of the gain parameterk. Energy is in arbitrary units.
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As in the previous case the average energy varies w
parameterk in a waving pattern that abruptly ends at th
moment synchronization is reached. The Chua attractor
small region around the origin of phase space, that is why
absolute values of the exchanged energy are in this c
much smaller than in the previous case. As long as the ga
not large enough as to force identical synchronization,
system is dissipating energy on average, and, conseque
to maintain that regime at any given value ofk requires a
provision of energy. For values ofk aroundk50.35 identical
synchronization is reached, at a zero energy maintena
cost. This case and the previously described Lorenz guid
Lorenz case exhibit a qualitatively similar pattern of ener
variation which could probably be considered representa
of the feedback identical synchronization behavior.

3. Sensitivity to perturbations

Real systems are unlikely to be identical as some par
eter mismatch can always be expected. If two systems
not exactly the same, identical synchronization at zero c
will not spontaneously occur. Nevertheless, a regime
nearly complete synchronization can be forced, at large
ues of the coupling parameterk, whose maintenance wil
demand a limited amount of energy per unit timeP
5 lim

k→`
P(k), given by Eq.~39!.

Equation~39! can be used to evaluate the sensitivity
this limit flow of energyP to the parameter mismatch. Let u
suppose that in the previously studied Lorenz guiding Lore
case,x, y, and z are the variables of the guiding Loren
system with parameterss, r, andb, and the mismatch in the
parameters of the intended identical response Lorenz sys
are respectively,ds, dr, anddb. According to Eqs.~39! and
~22!, the energy per unit time,dP, required to maintain a
synchronized regime will be

dP5^~r1dr!x22y22~b1db!z2&. ~42!

Taking into consideration that the average energy dissipa
by the response system is zero when its parameters are
tical to the corresponding parameters in the guiding syst
we have

at

FIG. 8. A Chua system with parametersa510, c520.143,
b516 guiding another identical Chua system. In part~a!, average
energy of the guided system at different values of the gain par
eterk. In ~b!, average energy dissipated per unit time by the guid
system at different values of the gain parameterk. Energy is in
arbitrary units.
6-8
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dP5dr^x2&2db^z2&. ~43!

Equation~43! shows that the synchronization energy due
the parameter mismatch is not sensitive to parameters, and
that its sensitivity to parameterr can be found by computing
the average value of the square of the guiding variablex,
while its sensitivity to parameterb is given by minus the
average value of the square of the guiding variablez. Note
that these results refer to the theoretical limit case of a g
parameterk going to infinity.

The presence of noise will also prevent two theoretica
identical systems from reaching a regime of identical s
chronization at zero cost. Equation~38! can be used to com
pute the cost at different values of the gain parameterk.

B. Synchronizing different systems

When the systems to be synchronized are different
mechanisms governing the dynamics of the synchroniza
are likely to be more complicated than in the case of ide
cal systems. A possible approach to its understanding i
contemplate the guided system and its coupling device in
second of Eqs.~35! as ẋk5 f (xk)2Kxk1Ky which shows
the original structure of the guided systemf (xk) perturbed
by the coupling device tof (xk)2Kxk plus an exogenous
input Ky. For different values of the gain parameterk, the
whole lot of limit sets of the perturbed guided system ex
riences a pattern of bifurcations which can be relevant for
dynamics of the coupling system, specially for low values
k and weak leading signals. In particular, when studying
energy balance of the synchronization at different values
the gain parameter, the bifurcation pattern of equilibriu
points could determine the behavior of the coupling at l
values ofk, while what is going to happen for larger value
of the gain parameter could be more dependent on the c
acteristics of the master system. That is, roughly speak
the traits of the coupled regime reached at low values of
gain parameter, weak couplings, are likely to be characte
tic of the slave system itself and relatively independent of
master system, while for strong couplings the guiding sys
becomes dominant. Sometimes very weak couplings ca
able to produce stable periodic orbits or stable points in
perturbed system which induce the onset of synchroniza
phenomena such us phase synchronization or general
chronization@1# or even regimes of nearly complete synchr
nization at low values of energy exchange.

In what follows a Chua guided Lorenz system and a Ch
guided Ro¨ssler system are studied.

1. A Chua continaous system guides a Ro¨ssler system

We study here the case of synchronizing two differe
chaotic systems where a Chua continuous system with
rametersa510, c520.143,b516 guides a Ro¨ssler system
with parametersa50.2, b50.2, c55.7. The parameter val
ues have been chosen to guarantee a chaotic free behav
the drive and response systems.

The intrinsic dynamics of the autonomous family
Rössler systems perturbed by the coupling , that is,ẋk
5 f (xk)2Kxk , wheref (xk) stands for the particular Ro¨ssler
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guided system studied, exhibits a bifurcation diagram
equilibrium points as a function of the coupling parametek
that can explain some salient features of the computed
ergy. Fork50, the unperturbed initial Ro¨ssler system has a
weakly unstable spiral saddle point very near the ori
whose stability condition is very soon altered as a function
the parameterk. For k50.04 the perturbed systemẋk
5 f (xk)2Kxk has a stable limit cycle that collapses into
stable spiral node, byk50.098. This bifurcation scheme ca
explain the fine structure of the observed energy at very
values of the parameterk. In fact, the pattern of Lyapunov
exponents of the response system at these values of the
parameterk is complicated but atk50.098 the largest
Lyapunov exponent becomes negative and generalized
chronization@18# occurs due to the destruction of the speci
dynamics of theẋk5 f (xk)2Kxk perturbed system. The on
set of this synchronized regime is detected by a sudden
cline of the energy exchanged per unit time as it can be s
in Fig. 9~a!. For larger values of the gain parameter t
Rössler guided system is progressively dragged towards
basin of attraction of the guiding Chua system to a regime
complete synchronization that takes place at the expense
net income flow of energy, of about 0.8 arbitrary units p
second, required to maintain its dissipative condition. In F
9~b! the average derivative of the Ro¨ssler system energy i
presented versus a high range of values of the gain param
k.

2. A Chua continuous system guiding a Lorenz system

In this case a Chua continuous system with parame
a510, c520.143, b516 guides a Lorenz system with pa
rameterss516, r545.92, b54. With those values of the
parameters the free behavior of the drive and response
tems is chaotic. Due to the relatively low energy values c
responding to the states of the attractor of the guiding C
system, aroundH50.001 as it can be appreciated in Fig.
the variation of the energy balance of the synchronization
a function of the gain parameterk depends on the particula
structure of the bifurcations of the equilibriums of the pe
turbed family of guided systems in the sense expressed in
preceding section.

FIG. 9. A Chua system with parametersa510, c520.143,
b516 guiding a Ro¨ssler system with parametersa50.2, b50.2,
c55.7. In part~a!, average energy dissipated per unit time by t
guided system at small values of the gain parameterk. In part ~b! a
larger range of values of the gain parameters. Energy in arbit
units.
6-9
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As k increases, the family of perturbed autonomous L
renz systems changes the position and stability of its nat
equilibrium points according to the following bifurcatio
pattern. Initially, for k50, the unperturbed Lorenz syste
has three unstable equilibrium states. One saddle point a
origin and two symmetric unstable spiral points at a cert
distance from it. The origin remains an equilibrium point f
the whole range of values of the parameterk . The two spiral
points move symmetrically towards zero, ask increases,
changing their stability condition to stable spiral equilibriu
points atk50.77 and to stable nodes atk517.24. Finally, at
k519.63, the two fixed points collapse to zero and dis
pear, according to a pitchfork bifurcation pattern where
zero unstable fixed point becomes stable. Fork.19.63, the
origin is the only stable equilibrium point. According to thi
the perturbed guided system loses its chaotic character
k50.77 , and becomes susceptible to being guided by
external Chua system. This situation is reflected in the c
ditional Lyapunov exponents, the three of them becom
negative fromk50.77 generating conditions for the appea
ance of a regime of phase synchronization together with g
eralized synchronization.

As a consequence the guided Lorenz system soon s
synchronizing in frequency with the Chua guiding syste
and at values ofk beyondk50.77 the guided system tries t
replicate the driver although at the wrong location in pha
space. The location in phase space is determined by th
cation of the equilibria of the perturbed Lorenz family. Fi
ure 10 shows four instances of Lorenz guided system
values ofk, respectively,k55, k55.5, k56, andk56.5.
The figure also shows the movement through phase s
that the coupling imposes to one of the originally unsta

FIG. 10. A Chua system with parametersa510, c520.143,
b516 guides a Lorenz system with parameterss516, r545.92,
b54 at four different values of the gain parameter,k55, k55.5,
k56, andk56.5. The trajectory in phase space of one of the ste
states of the perturbed Lorenz system in that range of values o
gain parameterk is also shown.
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spiral equilibrium points of the guided Lorenz system in th
range of values of the gain parameterk.

This behavior implies that the main responsible comp
nent of the observed energy exchange pattern is the ov
movement in phase space of the oscillatory region of
guided system towards the origin, as the strength of the c
pling increases. Superimposed to it, and hidden, remain
flow of energy that could be in some way associated with
cost of the frequency and phase synchronization of both
tems. As the energy function and the bifurcation pattern
equilibriums of the guided system are known, the main
ergy component associated to the location of the guided
cillatory regime can be theoretically calculated. Figure 11~a!
shows the derivative of the energy that corresponds to
successive equilibrium points as a function ofk. On the same
picture the actual computed energy derivative of the guid
Lorenz system is also shown. In Fig. 11~b! the difference
between both energy derivatives, which we have called
duced energy derivative, is shown. The transition to a sta
regime of the intrinsic dynamics of the guided system ak
50.77 has a clear effect on this reduced energy derivativ
can be seen in the figure as an initial dissipative trans
regime. Once this transient is over, the energy derivative
comes positive for an ample region of values ofk. That
means that at every value ofk within this range the system
tries to increase its average energy via a kind of active
sipation. Nevertheless, as the system is confined to a re
rent region of the phase space it must have a constant a
age energy and, consequently, the coupling device m
necessarily absorb the supply of energy. At values of
coupling strength aroundk518 this situation is reversed
There is a large perturbation, apparently produced by
collapse of the two stable spirals to a stable node at
origin, that makes the guided system become very diss
tive. This perturbation relaxes with increasing gains and
less dissipative regime is reached atk525 that continues
basically unchanged for any other larger value of the g
parameter.

VI. CONCLUSIONS

In this paper we have presented a method to assign
chaotic system of known dynamics a function of the pha

y
he

FIG. 11. A Chua system with parametersa510, c520.143,
b516 guides a Lorenz system with parameterss516, r545.92,
b54. In part~a! energy derivative corresponding to the theoretic
equilibrium regime at each value ofk ~dots! and actual computed
energy derivative~full line!. In part ~b!, difference between both
energy derivatives, actual minus theoretical for the steady state
6-10
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space variables with the characteristics of an energy. To
so we have used a generalized Hamiltonian formalism w
the additional condition that any energy variation along
trajectory of the chaotic system be linked to the diverge
of the vector field responsible for the volume contraction
the phase space. In this way, the energy function assoc
to a system becomes intimately related to its particular st
ture conveying a real physical meaning. We have assig
energy functions to the Lorenz, Ro¨ssler, and Chua families o
chaotic systems.

We have used the previously deduced Hamiltonian en
gies to establish a measure of the cost, in terms of energ
the maintenance of different degrees of synchronized
gimes between these chaotic systems. Our results con
that the cost of maintaining an identical synchronized reg
between identical systems is zero. Nevertheless, for coup
strengths weaker than the required to establish an iden
synchronization regime a continuous supply of energy is
manded by the guided system that slumps to zero at the o
of the identical synchronization. We have observed this
havior performing computational experiments of identic
synchronization with both, a Chua guided Chua system a
Lorenz guided Lorenz system.

A synchronized regime between systems of differ
structures never occurs spontaneously at any given valu
the gain parameterk. Complete synchronization betwee
nonidentical systems is a limit regime that requires coupl
strengths going to infinity. Nevertheless, a theoretically in
nite coupling strength does not mean an unlimited provis
of energy. We have proved that, in the limit, maintaining
identical synchronized regime between nonidentical syst
requires a limited energy per unit time that can be fou
averaging the dissipation of energy of the guided sys
along a trajectory of the guiding system. Thus, this lim
value of the average energy depends on the particular c
acteristics of both systems.

This result can be used to evaluate the robustness o
synchronization between supposedly identical systems to
rameter mismatch. We have illustrated this point studying
sensitivity of the synchronization energy to parameter m
match in the case of a Lorenz system guiding another id
tical Lorenz system.
.F

.

a,

o

01160
o
h
a
e
f
ed
c-
ed

r-
of
e-
rm
e
g
al
-

set
-

l
a

t
of

g
-
n

s
d
m
t
ar-

he
a-
e
-
n-

We have also studied and discussed the flows of energ
different values of the coupling strength for nonidentical sy
chronization between Chua guided both Ro¨ssler and Lorenz
systems. We show that the dissipated energy is sensitiv
some salient features of the bifurcation pattern of equilib
of the perturbed guided system and it is able to detect so
of their transitions to stability. We show that the whole co
tribution to the dissipated energy can be analyzed in term
two components. The quantitatively most important comp
nent can be associated with the trajectory described in ph
space by the stable steady states induced by the couplin
the guided system. The rest of the dissipated energy coul
in some way related to the accomplishment of the synch
nization in frequency and phase.

Finally, we think that the energy approach developed
this paper can be used to explore some of the w
established phenomena in the synchronization of chaotic
tems such as the collapse of the trajectory of the coup
system to some invariant subspaces or the intermittent los
synchronization in coupled identical systems when the c
pling strength is just beyond the synchronization thresh
and the system is subjected to small perturbations. The t
sition to stability of the synchronization manifold is reveal
by the transition to negative values of the condition
Lyapunov exponents. Nevertheless, if the Lyapunov ex
nents are negative and yet there are persistent desynch
zation events with synchronization errors reaching levels
yond that of the perturbations, it is because there
invariant sets locally unstable which are able to magnify
perturbation. These regions in phase space might be cha
terized by positive local Lyapunov exponents. An analysis
the local average energy variation corresponding to the
gions in phase space with positive local Lyapunov expone
would show the way the synchronization energy can be s
sitive to the influence of the unstable sets of the synchro
zation manifold.
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